Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Aging (Albany NY) ; 16(5): 4670-4683, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38446592

RESUMO

Surgery and anesthesia are vital medical interventions, but concerns over their potential cognitive side effects, particularly with the use of inhalational anesthetics like sevoflurane, have surfaced. This study delves into the neuroprotective potential of Echinatin against sevoflurane-induced neurotoxicity and the underlying mechanisms. Echinatin, a natural compound, has exhibited anti-inflammatory, antioxidant, and anticancer properties. Sevoflurane, while a popular anesthetic, is associated with perioperative neurocognitive disorders (PND) and neurotoxicity. Our investigation began with cellular models, where Echinatin demonstrated a significant reduction in sevoflurane-induced apoptosis. Mechanistically, we identified ferroptosis, a novel form of programmed cell death characterized by iron accumulation and lipid peroxidation, as a key player in sevoflurane-induced neuronal injury. Echinatin notably suppressed ferroptosis in sevoflurane-exposed cells, suggesting a pivotal role in neuroprotection. Expanding our research to a murine model, we observed perturbations in iron homeostasis, inflammatory cytokines, and antioxidants due to sevoflurane exposure. Echinatin treatment effectively restored iron balance, mitigated inflammation, and preserved antioxidant levels in vivo. Behavioral assessments using the Morris water maze further confirmed Echinatin's neuroprotective potential, as it ameliorated sevoflurane-induced spatial learning and memory impairments. In conclusion, our study unveils Echinatin as a promising candidate for mitigating sevoflurane-induced neurotoxicity. Through the regulation of ferroptosis, iron homeostasis, and inflammation, Echinatin demonstrates significant neuroprotection both in vitro and in vivo. These findings illuminate the potential for Echinatin to enhance the safety of surgical procedures involving sevoflurane anesthesia, minimizing the risk of cognitive deficits and neurotoxicity.


Assuntos
Chalconas , Ferroptose , Éteres Metílicos , Síndromes Neurotóxicas , Ratos , Animais , Camundongos , Sevoflurano/toxicidade , Éteres Metílicos/farmacologia , Éteres Metílicos/toxicidade , Antioxidantes/farmacologia , Animais Recém-Nascidos , Ratos Sprague-Dawley , Homeostase , Inflamação/metabolismo , Hipocampo/metabolismo
2.
Neuroscience ; 545: 1-15, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38447691

RESUMO

Sevoflurane (Sev) anesthesia is associated with cognitive deficits and neurotoxicity. This study explores the epigenetic mechanism of SET domain containing 1B (SETD1B) in Sev-induced cognitive impairment in neonatal mice. Neonatal mice (C57BL/6, n = 72) were exposed to 3% Sev for 2 h per day at P6, 7, and 8, and the control neonatal mice were only separated from the mother for 2 h. The mice were divided into groups of 12 individuals, with an equal number of male and female mice in each group. Mice were intraperitoneally injected with adenovirus-packaged SETD1B overexpression vector. Behavioral tests (Morris water maze, open field test, T-maze, novel object recognition, etc.) were performed at P30. Mouse hippocampal neuronal cells were cultured in vitro. SETD1B, C-X-C motif chemokine receptor 4 (CXCR4), NLR family pyrin domain containing 1 (NLRP1), Cleaved Caspase1, and GSDMD-N expressions in hippocampal tissues or cells were determined by quantitative real-time polymerase chain reaction and Western blot. SETD1B and histone H3 lysine 4 methylation (H3K4me1, H3K4me2, and H3K4me3) enrichment on the CXCR4 promoter was analyzed by ChIP. Sev insulted cognitive impairment and diminished SETD1B expression in mouse hippocampal tissues. SETD1B overexpression mitigated cognitive impairment, enhanced H3K4me3 levels in hippocampal tissues, and restrained hippocampal neuronal pyroptosis. SETD1B increased CXCR4 expression by elevating the H3K4me3 level on the CXCR4 promoter, thereby curbing NLRP1/Caspase1-mediated hippocampal neuronal pyroptosis. To conclude, SETD1B enhances CXCR4 expression by elevating the H3K4me3 level on the CXCR4 promoter, thereby suppressing NLRP1/Caspase1-triggered hippocampal neuronal pyroptosis and alleviating Sev-induced cognitive impairment in neonatal mice.


Assuntos
Anestésicos Inalatórios , Animais Recém-Nascidos , Disfunção Cognitiva , Epigênese Genética , Hipocampo , Histona-Lisina N-Metiltransferase , Histonas , Camundongos Endogâmicos C57BL , Sevoflurano , Animais , Sevoflurano/farmacologia , Sevoflurano/toxicidade , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Epigênese Genética/efeitos dos fármacos , Camundongos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Anestésicos Inalatórios/toxicidade , Histonas/metabolismo , Feminino , Masculino , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Metilação/efeitos dos fármacos
3.
CNS Neurosci Ther ; 30(2): e14612, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334030

RESUMO

AIMS: Numerous studies on animals have shown that exposure to general anesthetics in infant stage may cause neurocognitive impairment. However, the exact mechanism is not clear. The dysfunction of iron metabolism can cause neurodevelopmental disorders. Therefore, we investigated the effect of iron metabolism disorder induced by sevoflurane (Sev) on cognitive function and the proliferation of neural precursor cells (NPCs) and neural stem cells (NSCs) in infant mice. METHODS: C57BL/6 mice of postnatal day 14 and neural stem cells NE4C were treated with 2% Sev for 6 h. We used the Morris water maze (MWM) to test the cognitive function of infant mice. The proliferation of NPCs was measured using bromodeoxyuridine (BrdU) label and their markers Ki67 and Pax6 in infant brain tissues 12 h after anesthesia. Meanwhile, we used immunohistochemical stain, immunofluorescence assay, western blot, and flow cytometer to evaluate the myelinogenesis, iron levels, and cell proliferation in cortex and hippocampus or in NE4C cells. RESULTS: The results showed that Sev significantly caused cognitive deficiency in infant mice. Further, we found that Sev inhibited oligodendrocytes proliferation and myelinogenesis by decreasing MBP and CC-1 expression and iron levels. Meanwhile, Sev also induced the iron deficiency in neurons and NSCs by downregulating FtH and FtL expression and upregulating the TfR1 expression in the cortex and hippocampus, which dramatically suppressed the proliferation of NSCs and NPCs as indicated by decreasing the colocalization of Pax6+ and BrdU+ cells, and caused the decrease in the number of neurons. Interestingly, iron supplementation before anesthesia significantly improved iron deficiency in cortex and hippocampus and cognitive deficiency induced by Sev in infant mice. Iron therapy inhibited the decrease of MBP expression, iron levels in neurons and oligodendrocytes, and DNA synthesis of Pax6+ cells in hippocampus induced by Sev. Meanwhile, the number of neurons was partially recovered in hippocampus. CONCLUSION: The results from the present study demonstrated that Sev-induced iron deficiency might be a new mechanism of cognitive impairment caused by inhaled anesthetics in infant mice. Iron supplementation before anesthesia is an effective strategy to prevent cognitive impairment caused by Sev in infants.


Assuntos
Disfunção Cognitiva , Deficiências de Ferro , Células-Tronco Neurais , Humanos , Camundongos , Animais , Sevoflurano/toxicidade , Células-Tronco Neurais/metabolismo , Bromodesoxiuridina/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Proliferação de Células , Ferro/metabolismo , Hipocampo/metabolismo
4.
Acta Pharmacol Sin ; 45(2): 298-311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803140

RESUMO

Sevoflurane exposure during rapid brain development induces neuronal apoptosis and causes memory and cognitive deficits in neonatal mice. Exosomes that transfer genetic materials including long non-coding RNAs (lncRNAs) between cells play a critical role in intercellular communication. However, the lncRNAs found in exosomes derived from neurons treated with sevoflurane and their potential role in promoting neurotoxicity remain unknown. In this study, we investigated the role of cross-talk of newborn mouse neurons with microglial cells in sevoflurane-induced neurotoxicity. Mouse hippocampal neuronal HT22 cells were exposed to sevoflurane, and then co-cultured with BV2 microglial cells. We showed that sevoflurane treatment markedly increased the expression of the lncRNA growth arrest-specific 5 (Gas5) in neuron-derived extracellular vesicles, which inhibited neuronal proliferation and induced neuronal apoptosis by promoting M1 polarization of microglia and the release of inflammatory cytokines. We further revealed that the exosomal lncRNA Gas5 significantly upregulated Foxo3 as a competitive endogenous RNA of miR-212-3p in BV2 cells, and activated the NF-κB pathway to promote M1 microglial polarization and the secretion of inflammatory cytokines, thereby exacerbating neuronal damage. In neonatal mice, intracranial injection of the exosomes derived from sevoflurane-treated neurons into the bilateral hippocampi significantly increased the proportion of M1 microglia, inhibited neuronal proliferation and promoted apoptosis, ultimately leading to neurotoxicity. Similar results were observed in vitro in BV2 cells treated with the CM from HT22 cells after sevoflurane exposure. We conclude that sevoflurane induces the transfer of lncRNA Gas5-containing exosomes from neurons, which in turn regulates the M1 polarization of microglia and contributes to neurotoxicity. Thus, modulating the expression of lncRNA Gas5 or the secretion of exosomes could be a strategy for addressing sevoflurane-induced neurotoxicity.


Assuntos
Exossomos , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Sevoflurano/toxicidade , Microglia/metabolismo , Animais Recém-Nascidos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Exossomos/metabolismo , Neurônios/metabolismo , Citocinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
5.
CNS Neurosci Ther ; 30(1): e14554, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38105652

RESUMO

AIMS: Sevoflurane is widely used for general anesthesia in children. Previous studies reported that multiple neonatal exposures to sevoflurane can induce long-term cognitive impairment in adolescent rats, but the underlying mechanisms were not defined. METHODS: Postnatal day 6 (P6) to P8 rat pups were exposed to 30% oxygen with or without 3% sevoflurane balanced with air. The Y maze test (YMT) and Morris water maze (MWM) tests were performed in some cohorts from age P35 to assess cognitive functions, and their brain samples were harvested at age P14, 21, 28, 35, and 42 for measurements of various molecular entities and in vivo electrophysiology experiments at age P35. RESULTS: Sevoflurane exposure resulted in cognitive impairment that was associated with decreased synCAM1 expression in parvalbumin (PV) interneurons, a reduction of PV phenotype, disturbed gamma oscillations, and dendritic spine loss in the hippocampal CA3 region. Enriched environment (EE) increased synCAM1 expression in the PV interneurons and attenuated sevoflurane-induced cognitive impairment. The synCAM1 overexpression by the adeno-associated virus vector in the hippocampal CA3 region restored sevoflurane-induced cognitive impairment, PV phenotype loss, gamma oscillations decrease, and dendritic spine loss. CONCLUSION: Our data suggested that neonatal sevoflurane exposure results in cognitive impairment through decreased synCAM1 expression in PV interneurons in the hippocampus.


Assuntos
Disfunção Cognitiva , Parvalbuminas , Humanos , Criança , Animais , Ratos , Sevoflurano/toxicidade , Animais Recém-Nascidos , Parvalbuminas/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Interneurônios/metabolismo , Aprendizagem em Labirinto/fisiologia , Hipocampo/metabolismo
6.
Neuroreport ; 35(3): 152-159, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38141010

RESUMO

CONTEXT: Sevoflurane is an inhalational anesthetic widely used in pediatric surgery. However, animal studies have shown that multiple sevoflurane exposures during the neonatal period led to ototoxicity. 20(S)-Ginsenoside Rh1, a ginsenoside extract, protects against cisplatin-induced ototoxicity by scavenging free radicals. OBJECTIVE: This study aimed to assess the effects of Rh1 on sevoflurane-induced ototoxicity. MATERIALS AND METHODS: Neonatal cochlear explants and House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were cultured and randomly divided into three groups: the control group, the sevoflurane group and the Rh1 pretreatment group. We pretreated cochlear explants or HEI-OC1 cells with 100 µM Rh1 2 hours before performing sevoflurane exposure. Immunofluorescence was used to detect hair cells and spiral ganglion neurons. Cell Counting Kit-8 assay was used to determine cell viability. Annexin V-fluorescein isothiocyanate and propidium iodide were used to evaluate apoptosis. CellROX-Green and MitoSOX-Red probes were used to measure the amount of reactive oxygen species (ROS). Tetramethylrhodamine methyl ester labeling was used to examine mitochondrial membrane potential. RESULTS: Rh1 attenuated spiral ganglion neuron nerve fibers and synapses degeneration in cochlear explants after sevoflurane exposure. Rh1 significantly increased the viability of HEI-OC1 cells, reduced reactive oxygen species accumulation in HEI-OC1 cells, and prevented mitochondrial damage in HEI-OC1 cells after sevoflurane exposure. DISCUSSION AND CONCLUSION: These findings suggest that Rh1 is a promising drug for preventing sevoflurane-induced ototoxicity.


Assuntos
Antineoplásicos , Ginsenosídeos , Ototoxicidade , Humanos , Animais , Recém-Nascido , Criança , Antineoplásicos/farmacologia , Ginsenosídeos/farmacologia , Sevoflurano/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Cisplatino , Estresse Oxidativo , Apoptose
7.
Mediators Inflamm ; 2023: 7750134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064501

RESUMO

Objective: To explore the molecular mechanism of sevoflurane-induced neurotoxicity and to determine whether lncRNA HOXA11-AS affects sevoflurane-induced neuronal apoptosis and inflammation by regulating miR-98-5p/EphA4. Methods: Morris water maze (MWM) test was used to detect the learning and memory ability of rats, HE staining was used to observe hippocampal pathology, TUNEL staining was used to detect the level of neuronal apoptosis, and RT-qPCR was used to detect the expression of HOXA11-AS, miR-98-5p, IL-6, IL-1ß, and TNF-α. At the same time, the contents of IL-6, IL-1ß, and TNF-α in serum were detected by ELISA. The expressions of apoptosis-related proteins EphA4, Bax, Cleaved caspase 3, and Bcl-2 were detected by Western blot. The dual-luciferase gene reporter verified the targeting relationship between HOXA11-AS and miR-98-5p and the targeting relationship between miR-98-5p and EphA4. Results: The expression of HOXA11-AS was observed in sevoflurane-treated rats or cells and promoted neuronal apoptosis and inflammation. HOXA11-AS was knocked out alone, or miR-98-5p was overexpressed which attenuates neuronal apoptosis and inflammatory inflammation after sevoflurane treatment. Furthermore, knockdown of HOXA11-AS alone was partially restored by knockdown of miR-98-5p or overexpression of EphA4. Conclusion: Inhibition of lncRNA HOXA11-AS attenuates sevoflurane-induced neuronal apoptosis and inflammatory responses via miR-98-5p/EphA4.


Assuntos
MicroRNAs , RNA Longo não Codificante , Receptor EphA4 , Sevoflurano , Animais , Ratos , Apoptose , Inflamação , Interleucina-6/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sevoflurano/toxicidade , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor EphA4/genética , Receptor EphA4/metabolismo
8.
Neurochem Res ; 48(9): 2754-2766, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37093343

RESUMO

BACKGROUND: Early exposure to sevoflurane may cause brain tissue degeneration; however, the mechanism involved in this process has not been explored. In this study, we investigated the role of long non-coding RNA small nucleolar RNA host gene 3 (lncRNA SNHG3) in sevoflurane-induced neuronal injury. METHODS: The injury models of HT22 and primary cultures of neurons were constructed using sevoflurane treatment. The WST-8 reduction was detected by CCK-8 assay, the level of inflammatory factors was detected by enzyme-linked immunosorbent assay (ELISA), and cell pyroptosis was detected by flow cytometry. The expression of genes and proteins was detected by qRT-PCR and Western blot, respectively. The level of ß-tubulin III in primary cultures of hippocampal neurons was analyzed by immunofluorescence. The relationship among SNHG3, PTBP1 and NEK7 was confirmed by RIP assay. RESULTS: The expression of SNHG3 and NEK7 were enhanced in sevoflurane-treated HT22 cells. Sevoflurane inhibited the WST-8 reduction in a concentration-dependent manner, promoted the pyroptosis, and increased pyroptosis-related protein expression. SNHG3 knockdown significantly inhibited sevoflurane-induced pyroptosis and inflammatory injury in HT22 cells and primary cultures of neurons. Furthermore, SNHG3 regulated NEK7 expression by binding to PTBP1. NEK7 knockdown reversed the decrease in WST-8 reduction, inhibited pyroptosis, and decreased the release of inflammatory factors and pyroptosis-related protein expression by inactivation of NLRP3 signaling in sevoflurane-induced HT22 cells. Moreover, NEK7 overexpression attenuated the effect of SNHG3 knockdown on neuronal pyroptosis and inflammation injury. CONCLUSION: Downregulation of SNHG3 attenuates sevoflurane-induced neuronal inflammation and pyroptosis by mediating the NEK7/NLRP3 axis, suggesting that SNHG3 could be a potential target gene for neuronal injury.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sevoflurano/toxicidade , Inflamação/induzido quimicamente , Inflamação/metabolismo , Neurônios/metabolismo , MicroRNAs/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Quinases Relacionadas a NIMA/metabolismo
9.
Behav Brain Res ; 442: 114327, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36738841

RESUMO

Sevoflurane is the primary inhaled anesthetic used in pediatric surgery. It has been the focus of research since animal models studies found that it was neurotoxic to the developing brain two decades ago. However, whether pediatric general anesthesia can lead to permanent cognitive deficits remained a subject of heated debate. Therefore, our study aims to determine the lifetime neurotoxicity of early long-time sevoflurane exposure using a short-life-cycle animal model, Drosophila melanogaster. To investigate this question, we measured the lifetime changes of two-day-old flies' learning and memory abilities after anesthesia with 3 % sevoflurane for 6 h by the T-maze memory assay. We evaluated the apoptosis, levels of ATP and ROS, and related genes in the fly head. Our results suggest that 6 h 3 % sevoflurane exposure at a young age can only induce transient neuroapoptosis and cognitive deficits around the first week after anesthesia. But this brain damage recedes with time and vanishes in late life. We also found that the mRNA level of caspases and Bcl-2, ROS level, and ATP level increased during this temporary neuroapoptosis process. And mRNA levels of antioxidants, such as SOD2 and CAT, increased and decreased simultaneously with the rise and fall of the ROS level, indicating a possible contribution to the recovery from the sevoflurane impairment. In conclusion, our results suggest that one early prolonged sevoflurane-based general anesthesia can induce neuroapoptosis and learning and memory deficit transiently but not permanently in Drosophila.


Assuntos
Anestésicos Inalatórios , Disfunção Cognitiva , Drosophila melanogaster , Sevoflurano , Animais , Trifosfato de Adenosina , Anestésicos Inalatórios/toxicidade , Disfunção Cognitiva/induzido quimicamente , Drosophila melanogaster/efeitos dos fármacos , Espécies Reativas de Oxigênio , Sevoflurano/toxicidade
10.
Neurochem Res ; 48(6): 1848-1863, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36729311

RESUMO

Postoperative cognitive dysfunction (POCD) is a common complication of central nervous system after anesthesia or surgery. Sevoflurane, an inhalation anesthetic, may inhibit cholinergic pathway that induce neuronal death and neuroinflammation, ultimately leading to POCD. Transauricular vagus nerve stimulation (taVNS) has neuroprotective effects in POCD rats, but the mechanisms related to cholinergic system have not been revealed. Sprague-Dawley rats were anesthetized with sevoflurane to construct the POCD model. The immunotoxin 192-IgG-saporin (192-sap) selectively lesioned cholinergic neurons in the basal forebrain, which is the major source of cholinergic projections to hippocampus. After lesion, rats received 5 days of taVNS treatment (30 min per day) starting 24 h before anesthesia. Open field test and Morris water maze were used to test the cognitive function. In this study, rats exposed to sevoflurane exhibited cognitive impairment that was attenuated by taVNS. In addition, taVNS treatment activated cholinergic system in the basal forebrain and hippocampus, and downregulated the expression of apoptosis- and necroptosis-related proteins, such as cleaved Caspase-3 and p-MLKL, in the hippocampus. Meanwhile, the activation of Iba1+ microglial by sevoflurane was reduced by taVNS. 192-sap blocked the cholinergic system activation in the basal forebrain and hippocampus and inhibited taVNS-mediated neuroprotection and anti-inflammation effects in the hippocampus. Generally, our study indicated that taVNS might alleviate sevoflurane-induced hippocampal neuronal apoptosis, necroptosis and microglial activation though activating cholinergic system in the basal forebrain.


Assuntos
Prosencéfalo Basal , Disfunção Cognitiva , Complicações Cognitivas Pós-Operatórias , Estimulação do Nervo Vago , Ratos , Animais , Sevoflurano/toxicidade , Ratos Sprague-Dawley , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Colinérgicos/metabolismo , Colinérgicos/farmacologia , Neurônios Colinérgicos , Complicações Cognitivas Pós-Operatórias/induzido quimicamente , Complicações Cognitivas Pós-Operatórias/prevenção & controle , Complicações Cognitivas Pós-Operatórias/metabolismo
11.
Oxid Med Cell Longev ; 2022: 4435161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238640

RESUMO

Background: Sevoflurane is one of the most popular inhalational anesthetics during perioperative period but presenting neurotoxicity among pediatric and aged populations. Recent experiments in vivo and in vitro have indicated that ferroptosis may contribute to the neurotoxicity of sevoflurane anesthesia. However, the exact mechanism is still unclear. Methods: In current study, we explored the differential expressed genes (DEGs) in HT-22 mouse hippocampal neuronal cells after sevoflurane anesthesia using RNA-seq. Differential expressed ferroptosis-related genes (DEFRGs) were screened and analyzed by Gene Ontology (GO) and pathway enrichment analysis. Protein-to-protein interaction (PPI) network was constructed by the Search Tool for the Retrieval of Interacting Genes (STRING). Significant modules and the hub genes were identified by using Cytoscape. The Connectivity Map (cMAP) was used for screening drug candidates targeting the identified DEFRGs. Potential TF-gene network and drug-gene pairs were established towards the hub genes. In final, we validated these results in experiments. Results: A total of 37 ferroptosis-related genes (18 upregulated and 19 downregulated) after sevoflurane exposure in hippocampal neuronal cells were finally identified. These differentially expressed genes were mainly involved into the biological processes of cellular response to oxidative stress. Pathway analysis indicated that these genes were involved in ferroptosis, mTOR signaling pathway, and longevity-regulating pathway. PPI network was constructed. 10 hub genes including Prkaa2, Chac1, Arntl, Tfrc, Slc7a11, Atf4, Mgst1, Lpin1, Atf3, and Sesn2 were found. Top 10 drug candidates, gene-drug networks, and TFs targeting these genes were finally identified. These results were validated in experiments. Conclusion: Our results suggested that ferroptosis-related genes play roles in sevoflurane anesthesia-related hippocampal neuron injury and offered the hub genes and potential therapeutic agents for investigating and treatment of this neurotoxicity after sevoflurane exposure. Finally, therapeutic effect of these drug candidates and function of potential ferroptosis targets should be further investigated for treatment and clarifying mechanisms of sevoflurane anesthesia-induced neuron injury in future research.


Assuntos
Anestésicos , Ferroptose , Fatores de Transcrição ARNTL , Animais , Biologia Computacional/métodos , Ferroptose/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Hipocampo , Camundongos , Fosfatidato Fosfatase/genética , Sevoflurano/toxicidade , Serina-Treonina Quinases TOR/genética
12.
Pharm Biol ; 60(1): 1915-1924, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36205592

RESUMO

CONTEXT: Sevoflurane (Sev) is a commonly used surgical anaesthetic; it has neurotoxic effects on the brain. Echinatin (Ech) is reported to have anti-inflammatory and antioxidant activity. OBJECTIVE: This research confirms the effect of Ech on Sev-induced neurotoxicity and cognitive deficits. MATERIALS AND METHODS: Primary rat hippocampal neurons were treated with 4.1% Sev for 6 h in the presence of Ech (5, 10, and 20 µM) or vehicle, followed by a further 42 h of culture. Male Sprague-Dawley aged rats were divided into 6 groups (n = 6): control, Sev, Sev + Ech (20 mg/kg;), Sev + Ech (40 mg/kg), and Sev + Ech (80 mg/kg). Rats were intraperitoneally injected with Ech or vehicle 1 h before Sev exposure (2% Sev for 5 h). RESULTS: We found that Ech (5, 10, and 20 µM) elevated cell viability (1.29-, 1.51-, 1.68-fold) but mitigated apoptosis (23.87% vs. 16.48%, 12.72%, 9.02%), oxidative stress, and ferroptosis in hippocampal neurons with Sev treatment. Ech activated the Nrf2 expression in Sev-induced in vitro and in vivo models of anaesthetic neurotoxicity. Ech also weakened neurotoxicity in hippocampal neurons with Sev treatment by increasing Nrf2 expression level. Moreover, Ech alleviated hippocampus neurons apoptosis (19.38% vs. 16.05%, 11.71%, 8.88%), oxidative stress, and ferroptosis in rats with Sev treatment. Ech improved Sev-induced cognitive deficits in rats. CONCLUSIONS: Ech alleviates Sev-induced neurotoxicity and cognitive deficits by mitigation of ferroptosis and oxidative stress. Ech may be developed as a new promising therapeutic drug for treatment of cerebral nerve injury caused by surgical anaesthesia.


Assuntos
Sobrecarga de Ferro , Síndromes Neurotóxicas , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Chalconas , Cognição , Hipocampo , Sobrecarga de Ferro/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/prevenção & controle , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Sevoflurano/metabolismo , Sevoflurano/toxicidade
13.
Neurotox Res ; 40(6): 1902-1912, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36308704

RESUMO

The objective of this study was to discuss the possible mechanism and effect of miR-182-5p delivered by plasma exosomes on sevoflurane-induced neuroinflammation and cognitive disorder in aged rats with postoperative cognitive dysfunction (POCD). Firstly, aged POCD rat models were constructed by sevoflurane anesthesia and superior mesenteric artery occlusion. Subsequently, exosomes and miR-182-5p were inhibited by injection of GW4869 and miR-182-5p-sponge, respectively. Then, exosomes were extracted from the plasma of rats in each group, followed by the determination of the morphology and diameters of exosomes as well as the expression of exosome markers CD63 and CD81 by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. Besides, the Morris water maze (MWM) and fear conditioning test were used to evaluate the learning and memory ability of rats; Western blot to detect the expression levels of neurotrophic factors (brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)) as well as NF-κB pathway-related proteins (p65 and p-p65) in rat hippocampal tissues or PC-12 cells; qRT-PCR to assess the expression levels of miR-182-5p and BDNF in rat plasma, plasma exosomes, hippocampal tissues, and PC-12 cells; ELISA to evaluate the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß in rat hippocampal tissues; and dual-luciferase reporter assay to verify the targeting relationship between miR-182-5p and BDNF. After examination, the results were obtained as follows. miR-182-5p expression was up-regulated in POCD rats and could be delivered by plasma exosomes. Inhibition of plasma exosomes or miR-182-5p could significantly ameliorate learning and memory disorders; decrease the levels of pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß; increase the expression of BDNF and NGF; and inhibit the activity of NF-κB signaling pathway in POCD rat hippocampus. In addition, miR-182-5p could also target and inhibit BDNF. All in all, miR-182-5p delivered by plasma exosomes promotes sevoflurane-induced neuroinflammation and cognitive dysfunction in aged POCD rats by targeting BDNF and activating the NF-κB pathway.


Assuntos
Disfunção Cognitiva , Exossomos , MicroRNAs , Complicações Cognitivas Pós-Operatórias , Ratos , Animais , NF-kappa B/metabolismo , Sevoflurano/toxicidade , Complicações Cognitivas Pós-Operatórias/induzido quimicamente , Fator Neurotrófico Derivado do Encéfalo , Doenças Neuroinflamatórias , Exossomos/metabolismo , Fator de Crescimento Neural , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , MicroRNAs/metabolismo
14.
Exp Brain Res ; 240(12): 3207-3216, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271938

RESUMO

As one of the commonly used inhalation anesthetics in clinical practice, sevoflurane is currently widely applied in surgery for children and the elderly due to its safety and efficacy. However, the neurotoxicity and cognitive impairment induced by sevoflurane exposure cannot be ignored. A recombinant adenovirus with green fluorescent protein-labeled heat shock protein 70 (Hsp70) was constructed and used to infect neural stem cells (NSCs) separated from neonatal mice. Quantitative real-time PCR and Western blot assays were used to evaluate the expression of certain genes. 5­Ethynyl­2'­deoxyuridine staining and cell counting kit assay were used to detect the proliferation and differentiation ability of NSCs. The Morris water maze experiment was used to test the cognitive abilities of mice. Adv-Hsp70 induced the overexpression of Hsp70 in mouse NSCs. Upregulation of Hsp70 promoted the proliferation ability and differentiation of mouse NSCs. NSCs that overexpressed Hsp70 attenuated sevoflurane-induced neurotoxicity and protected cognitive dysfunction in mice under sevoflurane exposure. In summary, our findings demonstrate the potential of overexpression of Hsp70 in NSCs against sevoflurane-induced impairments.


Assuntos
Anestésicos Inalatórios , Disfunção Cognitiva , Éteres Metílicos , Células-Tronco Neurais , Síndromes Neurotóxicas , Animais , Camundongos , Anestésicos Inalatórios/efeitos adversos , Animais Recém-Nascidos , Disfunção Cognitiva/metabolismo , Hipocampo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Éteres Metílicos/toxicidade , Sevoflurano/toxicidade
15.
Neurotoxicology ; 93: 140-151, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36155068

RESUMO

Sevoflurane anesthesia induces neurocognitive impairment and pyroptosis in the developing brain. Pleckstrin homology-like domain, family A, member 1 (PHLDA1) was involved in neuronal apoptosis, oxidative stress and inflammation during ischemic stroke. The role of PHLDA1 in sevoflurane-induced pyroptosis in developing rats was investigated. Firstly, neonatal rats at day 7 was exposed to 2.0% sevoflurane for 6 h to induce neurotoxicity. Pathological analysis showed that sevoflurane anesthesia induced hippocampal injury and reduced the number of neurons. The expression of PHLDA1 was elevated in hippocampus of sevoflurane-treated rats. Secondly, sevoflurane anesthesia-treated neonatal rats were injected with adeno-associated virus serotype (AAV) to mediate knockdown of PHLDA1. Injection with AAV-shPHLDA1 ameliorated sevoflurane-induced hippocampal injury and neurocognitive impairment in rats. Moreover, knockdown of PHLDA1 increased the number of neurons in sevoflurane-treated rats. Silence of PHLDA1 suppressed neuronal apoptosis, and inhibited pyroptosis in sevoflurane-treated rats. Thirdly, PHLDA1 was also elevated in sevoflurane-treated primary neuronal cells. Loss of PHLDA1 also enhanced cell viability and suppressed pyroptosis of sevoflurane-treated primary neuronal cells. Lastly, silence of PHLDA1 reduced protein expression of TRAF6 and p-Rac1 in sevoflurane-treated rats and neuronal cells. Over-expression of TRAF6 attenuated PHLDA1 silence-induced increase of cell viability and decreased pyroptosis in neuronal cells. In conclusion, loss of PHLDA1 protected against sevoflurane-induced pyroptosis in developing rats through inhibition of TRAF6-mediated activation of Rac1.


Assuntos
Piroptose , Fator 6 Associado a Receptor de TNF , Animais , Ratos , Sevoflurano/toxicidade , Fator 6 Associado a Receptor de TNF/metabolismo , Ratos Sprague-Dawley , Neurônios/metabolismo , Hipocampo/metabolismo , Apoptose , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo
16.
J Toxicol Sci ; 47(9): 349-357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36047109

RESUMO

Evidence has shown that suppression of the activation of NLRP3 inflammasome could ameliorate surgery/sevoflurane (SEV)-induced post-operative cognitive dysfunction (POCD). However, the underlying mechanisms remain unclear. UAF1 acts as a binding partner of USP1, which inhibits the ubiquitination-mediated degradation of NLRP3, indicating that UAF1 may be implicated in POCD through regulating the NLRP3 inflammasome. Here, we studied the role of UAF1/NLRP3 in SEV-induced cognitive impairment and neurotoxicity in rats. Neonatal rats were randomly divided into control, SEV, SEV+AAV-shNC and SEV+AAV-shUAF1 (UAF1-downregulated) groups. Morris water maze (MWM) test was applied to assess cognitive impairment. TUNEL staining, qRT-PCR and ELISA were used to assess the apoptosis and inflammation markers, respectively. The levels of superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) were quantified to determine oxidative stress. The results showed that SEV treatment led to significant cognitive impairment, increased apoptosis in hippocampal tissues, upregulation of MDA and inflammatory factors (TNF-α, IL-1ß, IL-18), as well as a decrease in SOD and CAT levels. All of the above observations were reversed by UAF1 downregulation. Furthermore, depletion of UAF1 neutralized SEV-mediated increase in p-NLRP3, p-IκBα and p-p65 levels. Altogether, the current study demonstrated that knockdown of UAF1 could alleviate SEV-induced cognitive impairment and neurotoxicity in rats by inhibiting pro-inflammatory signaling and oxidative stress.


Assuntos
Disfunção Cognitiva , Síndromes Neurotóxicas , Animais , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/genética , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Síndromes Neurotóxicas/genética , Estresse Oxidativo/genética , Ratos , Sevoflurano/toxicidade , Superóxido Dismutase/metabolismo
17.
Acta Biochim Pol ; 69(3): 537-542, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35994703

RESUMO

Exposure of patients undergoing multiple surgeries to anesthetic compounds leads to harmful side effects such as memory loss and impaired cognition. The current study was aimed to synthesize and investigate the effect of oxymatrine hydrazone on neuronal toxicity induced by sevoflurane in rats. Incubation with oxymatrine hydrazone was followed by exposure to sevoflurane for 48 h and determination of proliferation by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Apoptosis was detected by flow cytometry using Annexin V­FITC and propydium iodide staining. Western blot analysis was used for determination of changes in protein expression. Sevoflurane exposure significantly (P<0.05) reduced proliferation of neurons by activation of cell apoptosis. However, pretreatment of neurons with oxymatrine hydrazone prevented reduction of proliferative potential induced on exposure with sevoflurane. Pre-treatment of neurons with 5.0 µM doses of oxymatrine hydrazone significantly prevented apoptosis induction by sevoflurane. Moreover, oxymatrine hydrazone pretreatment inhibited BCL2 Associated-X (BAX) and cleaved caspase-3 levels induced by sevoflurane exposure in neurons. Phosphorylation of extracellular signal­regulated protein kinase (ERK1/2) and expression of BCL-2 in neurons exposed to sevoflurane were markedly promoted on pretreatment with oxymatrine hydrazone. Additionally, U0126 (ERK ½ activation inhibitor) treatment of sevoflurane exposed neurons inhibited promotion of ERK1/2 phosphorylation by oxymatrine hydrazone pre-treatment. In summary, cytotoxicity of sevoflurane in neurons was prevented on pretreatment with oxymatrine hydrazone. Pretreatment of sevoflurane exposed neurons with oxymatrine hydrazone inhibited apoptosis, suppressed BAX/caspase-3 and elevated BCL-2. Moreover, oxymatrine hydrazone pre-treatment promoted ERK1/2 phosphorylation in sevoflurane exposed neurons. Therefore, oxymatrine hydrazone has a great potential for prevention of neurotoxicity induced by sevoflurane.


Assuntos
Sistema de Sinalização das MAP Quinases , Fármacos Neuroprotetores , Alcaloides , Animais , Apoptose , Caspase 3/metabolismo , Hidrazonas/metabolismo , Hidrazonas/farmacologia , Iodetos/metabolismo , Iodetos/farmacologia , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinolizinas , Ratos , Sevoflurano/toxicidade , Regulação para Cima , Proteína X Associada a bcl-2/metabolismo
18.
Neurotox Res ; 40(3): 803-813, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460511

RESUMO

Sevoflurane (Sev) is a widely used inhalational anesthetic for general anesthesia in children. Previous studies have confirmed that multiple exposures to inhaled anesthetic can induce long-term neurotoxicity in newborn mice. However, the underlying mechanisms remain elusive. In this study, we investigated the role of homeodomain interacting protein kinase 2 (HIPK2), a stress activating kinase involved in neural survival and synaptic plasticity, and its underlying mechanism in sevoflurane-induced neurotoxicity. Empirical study showed that neuronal apoptosis was elevated after exposure to sevoflurane. Meanwhile, up-regulation of HIPK2 and AKT/mTOR signaling was observed in primary hippocampal neurons and hippocampus in mice upon anesthetic exposure. A64, antagonist of HIPK2, could significantly reduce increased apoptosis and activation of AKT/mTOR induced by sevoflurane. AKT antagonist MK2206 partially alleviated neuronal apoptosis without affecting the expression of HIPK2. Experimental results demonstrated a crucial role of HIPK2/AKT/mTOR signaling in neurotoxicity of sevoflurane. Thus, HIPK2/AKT/mTOR signaling can serve as a potential target for the protection of inhalation anesthesia-induced cytotoxicity in the future.


Assuntos
Anestésicos Inalatórios , Síndromes Neurotóxicas , Anestésicos Inalatórios/toxicidade , Animais , Apoptose , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Síndromes Neurotóxicas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sevoflurano/toxicidade , Serina-Treonina Quinases TOR/metabolismo
19.
Neurotox Res ; 40(3): 775-790, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35471722

RESUMO

Inhaled anesthetics are known to induce neurotoxicity in the developing brains of rodents, although the mechanisms are not well understood. The aim of this study was to elucidate the molecular mechanisms underlying anesthetics-induced neurodevelopmental toxicity by VEGF receptor 2 (VEGFR2) through the interaction between microglia and neural stem cells (NSCs) in postnatal day 7 (P7) rats. Cognitive function of P7 rats exposed to isoflurane and sevoflurane were assessed using Morris Water Maze and T maze tests. We also evaluated the expression levels of NSC biomarkers (Nestin and Sox2), microglia biomarker (CD11b or or IBA1), pro-inflammatory cytokines (IL-6 and TNF-α), and VEGFR2 using western blotting and immunohistochemistry in the brains of control and anesthesia-treated rats. We found spatial learning and working memory was impaired 2 weeks after anesthetics exposure in rats. Isoflurane induced stronger and more prolonged neurotoxicity than sevoflurane. However, cognitive functions were recovered 6 weeks after anesthesia. Isoflurane and sevoflurane decreased the levels of Nestin, Sox2, and p-VEGFR2, activated microglia, decreased the number of NSCs and reduced neurogenesis and the proliferation of NSCs, and increased the levels of IL-6, TNF-α, and CD11b. Our results suggested that isoflurane and sevoflurane induced cognitive impairment in rats by inhibiting NSC development and neurogenesis via microglial activation, neuroinflammation, and suppression of VEGFR2 signaling pathway.


Assuntos
Anestésicos Inalatórios , Anestésicos , Disfunção Cognitiva , Isoflurano , Células-Tronco Neurais , Síndromes Neurotóxicas , Anestésicos Inalatórios/toxicidade , Animais , Animais Recém-Nascidos , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Interleucina-6/metabolismo , Isoflurano/toxicidade , Aprendizagem em Labirinto/fisiologia , Microglia/metabolismo , Nestina/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Doenças Neuroinflamatórias , Síndromes Neurotóxicas/metabolismo , Ratos , Sevoflurano/toxicidade , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
20.
Arh Hig Rada Toksikol ; 73(1): 62-70, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35390237

RESUMO

Patient immobilisation with volatile anaesthetics (VA) during radiotherapy is sometimes unavoidable. Although it is known that both VAs and ionising radiation can have nephrotoxic effects, there are no studies of their combined effects on DNA damage. The aim of this in vivo study was to address this gap by investigating whether 48 groups of healthy Swiss albino mice (totalling 240) would differ in kidney cell DNA damage response (alkaline comet assay) to isoflurane, sevoflurane, or halothane anaesthesia and exposure to 1 Gy or 2 Gy of ionising radiation. We took kidney cortex samples after 0, 2, 6, and 24 h of exposure and measured comet parameters: tail length and tail intensity. To quantify the efficiency of the cells to repair and re-join DNA strand breaks, we also calculated cellular DNA repair index. Exposure to either VA alone increased DNA damage, which was similar between sevoflurane and isoflurane, and the highest with halothane. In combined exposure (VA and irradiation with 1 Gy) DNA damage remained at similar levels for all time points or was even lower than damage caused by radiation alone. Halothane again demonstrated the highest damage. In combined exposure with irradiation of 2 Gy sevoflurane significantly elevated tail intensity over the first three time points, which decreased and was even lower on hour 24 than in samples exposed to the corresponding radiation dose alone. This study confirmed that volatile anaesthetics are capable of damaging DNA, while combined VA and 1 Gy or 2 Gy treatment did not have a synergistic damaging effect on DNA. Further studies on the mechanisms of action are needed to determine the extent of damage in kidney cells after longer periods of observation and how efficiently the cells can recover from exposure to single and multiple doses of volatile anaesthetics and radiotherapy.


Assuntos
Anestésicos Inalatórios , Isoflurano , Anestésicos Inalatórios/toxicidade , Animais , Ensaio Cometa , Dano ao DNA , Halotano/toxicidade , Humanos , Isoflurano/toxicidade , Rim , Camundongos , Doses de Radiação , Sevoflurano/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA